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Abstract

A multi-stepped approximation has been developed to study the free vibration of a string with arbitrary
variation in the tension and the mass density. To achieve this objective, a novel exact approach is developed
to study free vibration of a string with N uniform sections of different mass densities under N different
tensions with N+1 attached concentrated masses and springs at the ends. The two advantages of this
approach are that it leads to a single frequency equation for any number of sections and the same computer
program can be used to solve different problems using pertinent data. This method is applied to cases where
tension and/or mass density changes continuously such as hanging chain, rotating chain, or inhomogeneous
strings vibrating in either horizontal or vertical position. In all cases, the results obtained using this
approach agreed with previous results obtained using exact and approximate methods. It was found that
natural frequencies of a fixed string under constant tension T with linear variation in the mass density,
rðxÞ ¼ r0ð1þ ax=LÞ, can be approximated using a very simple equation, on ¼ ðnp=LÞ½T=fr0ð1þ 0:5aÞg�1=2

and results reasonably agree with previous results for a wide range of a. New results for many other cases
are also presented in what follows.
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1. Introduction

Often transverse vibration of uniform string has been used as an example to introduce vibration
of continuous systems [1]. Exact closed-form solutions under constant tension can be obtained
with classical boundary conditions and with end masses and springs. Vibrations of strings under
constant tension with stepped changes in mass density are investigated to find natural frequencies
and to obtain harmonic spectra [2,3]. Vibrations of string with continuous variation in mass
density under constant tension are also investigated [4–6]. Vibration of a uniform fixed string with
attached concentrated mass is also investigated [7].
In all of the above cases tension is constant. However, in cases such as uniform hanging cord

with or without tip mass [8–10] and rotating cord [11] tension changes from the free end to the
fixed end. Such problems are solved using Bessel functions of zero order [8,9], method of
Frobenius [10] and Legendre function [11]. However, solutions are not available for cases where
the tension and the mass density vary arbitrarily along the length.
Here an approximate approach is developed to study vibration of string where mass density and

tension varies arbitrarily using a multi-stepped representation. To achieve this goal, an exact
approach has been developed in this manuscript to study the free vibration of a string with N
uniform sections with different mass densities and tensions and with N+1 attached concentrated
masses and with elastic springs at ends. A transfer matrix method developed previously by
the author [12,13] is used here as it leads to a single-frequency equation for any number
of sections. Exact closed-form solutions are developed for simple cases. It is found that
natural frequencies of a fixed string under constant tension T with linear variation in the
mass density, rðxÞ ¼ r0ð1þ ax=LÞ, can be approximated using a very simple equation,
on ¼ ðnp=LÞ½T=fr0ð1þ 0:5aÞg�1=2. The predictions of the proposed theory agree in all cases with
previous results and new results are presented in the following.
2. Theory

The differential equation of motion of a string with variable tension T(x) and mass per unit
length r(x) is given as

q=qx½TðxÞqyðx; tÞ=qx� ¼ rðxÞ½q2yðx; tÞq2t�. (1)

In a multi-stepped method the Ti and ri of the ith section are determined as, Ti ¼ ðTiexact þ

T ðiþ1ÞexactÞ=2 and ri ¼ ðriexact þ rðiþ1ÞexactÞ=2. Using this approximation, a transfer matrix
approach is developed, and is presented in what follows.
Consider a string shown in Fig. 1 which consists of N different but uniform sections with end

points of the ith section, i and i þ 1, length Li and attached concentrated mass at point i, mi and
two springs at end points 1 and N þ 1 as K1 and KNþ1, respectively. The differential equation for
the small transverse vibration of the uniform ith section can be written as,

Tiq
2yiðxi; tÞ=q

2xi ¼ riq
2yiðxi; tÞ=q

2t. (2)
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Fig. 1. Model of a string with N different tensions on different uniform sections with attached concentrated masses.
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The yiðxi; tÞ represents the deflection of the ith section at distance xi measured from the ith point at
time t. The pth mode during the harmonic motion of the ith section can be expressed as

yipðxi; tÞ ¼ ðAip cos lipxi þ Bip sin lipxiÞ expðjoptÞ, (3)

where lip ¼ op=ai, a2i ¼ ðTi=riÞ and op is the natural frequency to be determined. There are N

sections and N values of Aip and Bip and this lead to 2N unknowns. Here an efficient approach,
based on the transfer matrix method, is developed to express (2N�2) unknowns in terms of A1p

and Bip [12,13]. A novel general single-frequency equation in only one unknown op was obtained
by eliminating A1p and B1p using boundary conditions at the end points 1 and N þ 1. The required
transfer matrix Mi relates Aip and Bip of the ith section to Aði�1Þp and Bði�1Þp of the (i�1) th section
and is obtained next. Considering the continuity of transverse displacement and force balance at
point i leads to

yði�1Þpjxði�1Þ¼Lði�1Þ
¼ yip xi¼0j (4)

and

ðTidyiðxi; tÞ=dxiÞ xi¼0j � ðT ði�1Þdyi�1ðxi�1; tÞ=dxi�1Þ xi�1¼Li�1j

¼ ðmid
2yiðxi; tÞ=d

2tÞ xi¼0:j ð5Þ

Substituting and evaluating expressions of yipðxi; tÞ from Eq. (3) into Eqs. (4) and (5) leads to

Aip ¼ Aði�1ÞpCi�1 þ Bði�1Þp;Si�1;Ci�1 ¼ cos½lði�1ÞpLði�1Þ� and Si�1 ¼ sin½lði�1ÞpLði�1Þ�, (6)

TilipBip þ o2
pmiAip ¼ Ti�1lði�1Þp ð�Aði�1ÞpSi�1 þ Bði�1ÞpCi�1Þ. (7)

Eqs. (6) and (7) can be solved to express Aip and Bip in terms Aði�1Þp and Bði�1Þp using a transfer
matrix Mi as

½Aip;Bip�
T ¼Mi½Aði�1Þp;BðI�1Þp�

T , (8)

where

Mið1; 1Þ ¼ Ci�1;Mið1; 2Þ ¼ Si�1; Mið2; 1Þ ¼ ð�Ti�1lði�1ÞpSi�1 � o2
pmiCi�1Þ=Tilip,

Mið2; 2Þ ¼ ðTi�1lði�1ÞpCi�1 � o2
pmiSi�1Þ=Tilip. ð9Þ

Eq. (8) can be repeatedly used to relate the coefficients of the Nth span to those of the first span as,

½ANp;BNp�
T ¼MTN ½A1p;B1p�

T where MTN ¼MNMN�1MN�2; . . . ;M2. (10)
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The boundary conditions at points 1 and N þ 1 can be obtained by using force balance at these
points as

ðT1dy1ðx1; tÞ=dx1Þ xi¼0j ¼ ðm1d
2y1=d

2tþ K1y1Þ xi¼0j (11)

and

ð�TNdyN=dxNÞ ðxN ¼ LNÞ ¼ ðmNþ1d
2yN=d

2tÞ þ KNþ1yNÞÞ ðxN ¼ LNÞ:
�
�

�
� (12)

Evaluating and substituting values of derivatives from Eq. (2) into Eqs. (11) and (12) leads to

ðK1 �m1o2
pÞA1p � T1l1pB1p ¼ 0 and R1NANp þ R2NBNp ¼ 0, (13a,b)

where

R1N ¼ TNlNpSN þ ð�KNþ1 þmNþ1o2
pÞCNP and R2N ¼ �TNlNpCN þ ð�KNþ1 þmNþ1o2

pÞSN

Values of ANp ¼MTNð1; 1ÞA1p þMTNð1; 2ÞB1p and BNp ¼MTN ð2; 1ÞA1p þMTN ð2; 2ÞB1p are
obtained from Eq. (10) and are substituted into Eq. (13a) to get

½R1NMTNð1; 1Þ þ R2NMTNð2; 1Þ�A1p þ ½R1NMTNð1; 2Þ þ R2NMTNð2; 2Þ�B1p ¼ 0. (14)

Eliminating A1p and B1p from Eqs. (13a) and (14) leads to a general frequency equation

½K1 �m1o2
p�½R1NMTNð1; 2Þ þ R2NMTNð2; 2Þ� þ T1l1p½R1NMTNð1; 1Þ þ R2NMTNð2; 1Þ� ¼ 0.

(15)

Closed-form solutions can be obtained from Eq. (15) for large N, however, it is not practical. It
is also possible to get results for fixed ends using extremely large values of spring stiffnesses K1 and
KNþ1. However, to avoid numerical problems following equations are used. Frequency equation
of a string with fixed left end (i.e. K1 - N) and with both ends fixed (i.e. K1 - N and KNþ1 -
N) could be obtained as

R1NMTNð1; 2Þ þ R2NMTNð2; 2Þ ¼ 0 and CNMTNð1; 2Þ þ SNMTNð2; 2Þ ¼ 0. (16a,b)

The elements of Mi for a string under constant tension with all mi ¼ 0, are,

Mið1; 1Þ ¼ Ci�1; Mið1; 2Þ ¼ Si�1; Mið2; 1Þ ¼ ð�ai�1=aiÞSi�1; Mið2; 2Þ ¼ ðai�1=aiÞCi�1. (17)

The frequency equation for single span (N ¼ 1) is obtained by substituting MTN as an identity
matrix as

½ðK1 �m1o2
pÞðK2 �m2o2

pÞ � T2
1l

2
1p� sinðl1pL1Þ

þ T1l1p½K1 þ K2 � o2
pðm1 þm2Þ� cosðl1pL1Þ ¼ 0. ð18Þ

Next, closed-form solutions under constant tension (T1 ¼ T2 ¼ T) for N ¼ 2 and 3 are
developed. The frequency equation of a fixed–fixed uniform string (r1 ¼ r2 ¼ r), with
concentrated mass m2 at the center (N ¼ 2) and length 2L (L1 ¼ L1 ¼ L) is obtained using
C1 ¼ C2 ¼ cosðl1pLÞ, S1 ¼ S2 ¼ ðsin l1pLÞ, MTN ¼M2, and MTNð1; 2Þ ¼ S1 and MTNð2; 2Þ ¼
C1 � o2

pmS1=T1l1p as

sinðl1pLÞ½2 cosðl1pLÞ � ðo2
pm=Tl1pÞ sinðl1pLÞ� ¼ 0. (19)

The second part of this equation is tan ðl1p LÞ ¼ 2T=ðm a1opÞ and agrees with that given in
Ref. [7]. However, Eq. (19) is preferred. The frequency equation of a fixed–fixed string under
constant tension with N ¼ 2, r1ar2 can be obtained using MTN ¼M2, with elements
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MT2ð1; 2Þ ¼ S1, MT2 ð2; 2Þ ¼ þð a1=a2 ÞC1 given by Eq. (17), into Eq. (16b) as

C2S1 þ ða1=a2ÞC1S2 ¼ 0, (20)

and is the same as given in Ref. [2]. Similarly, frequency equation of a fixed–fixed three part string
(N ¼ 3) under constant tension with different densities can be obtained by using MTN ¼M3 M2.
Substituting MTNð1; 2Þ ¼ C2 S1 þ ða2=a1ÞC1 S2 and MTNð2; 2Þ ¼ �ða3=a2ÞS1 S2 þ ða3=a2ÞC1 C2

into Eq. (16b) leads to frequency equation

�ða3=a2ÞS1S2S3 þ C3C2S1 þ ða2=a1ÞC3C1S2 þ ða3=a1ÞS3C1C2 ¼ 0 (21)

and is the same as that given in Ref. [3].
3. Results and discussion

Natural frequencies are determined by solving the pertinent equations numerically. The
iterative computations are terminated when the value of the expression changed sign due a change
of 10�7 in the value of op. The mode shape of a string can be obtained using Eqs. (3) and (10). The
values of A1p and B1p are selected as follows: (a) left end fixed: A1p ¼ 0, B1p ¼ 1; (b) left end free:
A1p ¼ 1 and B1p ¼ 0 and (c) left end with mass and spring: A1p ¼ 1 and B1p ¼ ðK1 �m1o2

pÞ=T1l1p.
All other Aip’s and Bip’s are obtained by repeatedly using Eq. (11).
3.1. Constant tension cases

The results obtained for a single span case agreed with previous results [1]. In Table 1 results of
two and three part strings (N ¼ 2 and N ¼ 3) under constant tension without attached masses are
presented and they agreed with previous results [2,3]. Additional results with attached masses are
also presented. Results are also obtained for strings under constant tension for four non-
homogeneous mass density functions given in Refs. [3,4,6] using parameter a ¼ 2:5 and are
presented in Table 2. Values of exact results given in Table 2 agree with those obtained using
theory presented in Section 2. The results for a string under constant tension with linear variation
in mass density, rðxÞ ¼ r0ð1þ ax=LÞ, is considered by approximating it as a multi-stepped system
and are presented in the last two blocks of Table 2 and they agree with exact results for a ¼ 0:1
and 60. Additional results obtained using 300 steps (N ¼ 300) indicate that they are identical at
least up to the 5th decimal with the exact results obtained using equation given in Ref. [4].
Additionally, comparison of results obtained using one section (i.e. N ¼ 1, r1 ¼ ðr1exact þ
r2exactÞ=2 ¼ r0ð1þ 0:5aÞ for a wide range of a to exact results also indicated good agreement.
These results indicated that approximate values of on for this case could be obtained as

on ¼ ðnp=LÞ½T=fr0ð1þ 0:5aÞg�1=2. (22)

More results are obtained using values of parameters given in Ref. [5] (N ¼ 100, L ¼ 1m,
r0 ¼ 0:01 kg=m, a ¼ 3, T ¼ 10N). The values of the first three natural frequencies were
o1 ¼ 9:92428Hz, o2 ¼ 20:16531Hz and o3 ¼ 30:37080Hz and they agree with previous results
o1 ¼ 9:9242� 9:9244Hz, o2 ¼ 20:1653220:1654Hz and o3 ¼ 30:3707230:3708Hz which are
given in Ref. [5]. The results for variable tension cases are presented next.
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Table 1

Natural frequencies of a two and three (N ¼ 2,3) step strings with and without masses

Parameters o1 o2 o3

Fixed–fixed, N ¼ 2, L1 ¼ 0:2, L2 ¼ 0:8, r1 ¼ 1:8, r2 ¼ 1, [2] and

m2 ¼ 0:5
3.077423 5.879167 8.685548

2.492889 4.561965 8.101929

Fixed–fixed, N ¼ 2, L1 ¼ 0:8, L2 ¼ 0:2, r1 ¼ 1:4, r2 ¼ 1, [2] and

m2 ¼ 0:5
2.673238 5.422299 8.230085

2.315033 4.156389 6.998833

Fixed–fixed, N ¼ 2, L1 ¼ 0:4, L2 ¼ 0:6, r1 ¼ 2:25, r2 ¼ 1, [2] and

m2 ¼ 0:5
2.617993 5.235987 7.853981

1.987431 5.235987 6.347937

Free–fixed, N ¼ 2, L1 ¼ 0:4, L2 ¼ 0:6, r1 ¼ 2:25, r2 ¼ 1, [2] and

m2 ¼ 0:5
1.141199 4.049789 6.377186

0.982672 3.549103 5.724327

Fixed–fixed, N ¼ 3, L1 ¼ 0:6, L2 ¼ 0:25, L3 ¼ 0:15, r1 ¼ 1,

r2 ¼ 15:44448, r3 ¼ 17:64, [3] and m2 ¼ 0:5 m3 ¼ 0:5
1.745328 3.49066 5.235988

1.462919 2.908384 5.231816

Fixed-free, N ¼ 3, L1 ¼ 0:36, L2 ¼ 0:24, L3 ¼ 0:4, r1 ¼ 1, r2 ¼ 2:25,
r3 ¼ 0:81, [3] and m2 ¼ 0:5 m3 ¼ 0:5

1.454441 4.363323 7.272205

1.060270 3.359966 5.326169

Free-free, N ¼ 3, L1 ¼ 0:6, L2 ¼ 0:3, L3 ¼ 0:1, r1 ¼ 1, r2 ¼ 4, r3 ¼ 36,

[3] and m2 ¼ 0:5 m3 ¼ 0:5
1.745329 3.490658 5.235987

1.223339 2.425975 4.058853

Free-free, N ¼ 3, L1 ¼ 0:6, L2 ¼ 0:2774456, L3 ¼ 0:125533, r1 ¼ 1,

r2 ¼ 4:77921, r3 ¼ 22:841125, [3] and m2 ¼ 0:5 m3 ¼ 0:5
1.813704 3.422283 5.235987

1.268549 2.411818 3.924170

Most parameters are chosen to match the previous results [2,3].
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3.2. Variable tension—hanging chain

Variation in tension in three cases of hanging chain considered here are: (a) a uniform chain:
TðxÞ ¼ rgðL� xÞ, 0pxpL; (b) a uniform chain with the tip mass, mNþ1 : TðxÞ ¼
rgðL� xÞ þ gmNþ1, 0pxpL and (c) a uniform chain with the tip mass, mN+1 and other mass,
mP at distance Lp from the top: TðxÞ ¼ rg ðL� xÞ þ gmNþ1, LP pxpL, TðxÞ ¼ rg ðL� xÞ þ
gmNþ1 þ gmP 0pxpLP, respectively. In Table 3, the results obtained for first two cases are
presented in the rows 3 and 4 and they agree with previous results [9,10]. A few new results are
presented in the same table for a fixed–free chain with two attached masses, fixed–fixed hanging
string and a fixed–free hanging chain with linearly increasing mass density without and with
attached mass.

3.3. Rotating cord

The variation in tension for uniform cord with end mass mN+1 is given as TðxÞ ¼

O2½mNþ1ðLþ RÞ þ ðr=2ÞðL2 � x2Þ þ rRðL� xÞ�, 0pxpL. The R is the distance from the center
of rotation to the point where string is attached in a rotating frame. One additional example of
string with linear variation in mass density, rðxÞ ¼ r0ð1þ ax=LÞ, with a tip mass
is considered and tension in this case is given as TðxÞ ¼ O2mNþ1ðLþ RÞ þ r0O

2½ða=ð3LÞ

ðL3 � x3Þ þ 0:5ð1þ aR=LÞðL2 � x2Þ þ RðL� xÞ�. If additional mass m81 is attached at point 81,
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Table 2

Effect of continuously changing mass density on the natural frequencies of a fixed–fixed string under constant tension

o1 o2 o3

ðaþ 2Þ2=½4ða2 þ 2aÞxþ 4�

Exact [6] 3.304943 6.380517 9.492739

Present results, N ¼ 160 3.304778 6.380015 9.491874

½lnðaþ 1Þ=a�2ðaþ 1Þ2x

Exact [6] 3.084686 6.250411 9.402039

Present results, N ¼ 160 3.084624 6.250285 9.401847

ðaþ 1Þ2 ðaþ 1� axÞ�4

Exact [3,6] 3.141592 6.283185 9.424777

Present results, N ¼ 160 3.141043 6.282036 9.423039

rðxÞ ¼ r0ð1þ ax=LÞ, a ¼ 0:1
Exact [4] 0.975852 1.951914 2.927930

Present results, N ¼ 300 0.975852 1.951914 2.927934

Present results, N ¼ 1 0.975900 1.951800 2.927700

rðxÞ ¼ r0ð1þ ax=LÞ, a ¼ 60

Exact [4] 0.176220 0.365537 0.555140

N ¼ 300 0.176220 0.365537 0.555140

N ¼ 1 0.179605 0.359210 0.538816

Length L ¼ 1, Li ¼ 1=N, Ti ¼ 1 and a ¼ 2:5.
Exact results are obtained using Refs. [3,4,6].

Table 3

Comparison of present results with previous once in case of a hanging chain with a tip mass

Parameters o1 o2 o3

Previous

results exact

[9]

Present

results

N ¼ 160

Previous

results exact

[9]

Present

results

N ¼ 160

Previous

results exact

[9]

Present

results

N ¼ 160

Fixed–free, mNþ1 ¼ 0 1.20241 1.20235 2.76003 2.75904 4.32686 4.32244

Fixed–free, mNþ1 ¼ 1 1.05642 1.05642 4.08168 4.08169 7.73750 7.73751

Fixed–free, mNþ1 ¼ 10 1.00793 1.00793 10.2764 10.2764 20.4041 20.4041

Fixed–free with

mNþ1 ¼ 0:5, m1þN=2 ¼ 0:5
1.12561 2.67139 6.15452

Fixed–fixed 1.47446 3.11977 4.75875

Fixed–free rðxÞ ¼ ð1þ axÞ,

a ¼ 2:5
1.16761 2.93068 4.66068

Fixed-free rðxÞ ¼ ð1þ axÞ,

a ¼ 5, mnþ1 ¼ 0:5,
m1þN=2 ¼ 0:5

1.13856 2.85959 4.98911

A few additional results are also presented. Total length L ¼ 1, Li ¼ 1=N, ri ¼ 1 and g ¼ 1.
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Table 4

Natural frequencies of a rotating cord with rðxÞ ¼ r0ð1þ ax=LÞ and with and without attached masses

Parameters Exact [11] o2
1 Present o2

1 Present o2
2 Present o2

3

a ¼ 0:0 MNþ1 ¼ 0 0.3654 0.3654 2.6863 6.8736

R ¼ �0:4 MNþ1 ¼ 1 0.5448 0.5468 8.2626 29.9162

MNþ1 ¼ 10 0.5934 0.5934 61.4925 243.0856

MNþ1 ¼ 1 and 0.4822 3.1959 31.26664

M81 ¼ 1

a ¼ 0:0 MNþ1 ¼ 0 1.000 0.9999 5.9968 14.9774

R ¼ 0:0 MNþ1 ¼ 1 1.000 0.9999 15.0000 54.1220

MNþ1 ¼ 10 1.000 0.9999 103.7459 409.6591

MNþ1 ¼ 1 and 0.9989 6.0099 55.0183

M81 ¼ 1

a ¼ 0:0 MNþ1 ¼ 0 15.4935 15.4921 82.2891 202.2143

R ¼ 10:0 MNþ1 ¼ 1 12.1674 12.1674 181.6799 653.0876

MNþ1 ¼ 10 11.1594 11.1594 1159.810 4593.000

MNþ1 ¼ 1 and 13.3916 76.6202 628.9602

M81 ¼ 1

a ¼ �0:5 MN ¼ 0:0 0.5378 1.4389 2.3024

R ¼ �0:4 MNþ1 ¼ 1:0 0.7456 3.1114 6.0484

M81 ¼ 1:0 0.4940 1.2593 2.6804

a ¼ 1:0 MNþ1 ¼ 0:0 0.9999 2.5908 4.1206

R ¼ 0:0 MNþ1 ¼ 1:0 0.9999 3.5145 6.5472

M81 ¼ 1:0 0.9987 2.0450 3.9393

a ¼ 1:0 MNþ1 ¼ 0:0 1.5516 3.8742 6.1400

R ¼ 1:0 MNþ1 ¼ 1:0 1.4669 5.1136 9.5309

M81 ¼ 1:0 1.5999 3.0841 5.7252

Total length L ¼ 1, N ¼ 160, Li ¼ 1=N, r0 ¼ 1:0 and O ¼ 1.
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which is located at the distance L/2 from the left end, then tension in this case is obtained by
adding O2m81ðL=2þ RÞ to the tension that is given by the last equation to all sections before point
81. The results obtained for the case of a rotating uniform cord with R ¼ �0:04, 0 and 10 without
and with attached mass at the free end are presented in Table 4 and the values of o2

1 agree with the
previous results [11]. Additional new results of a rotating uniform and non-uniform cord with
rðxÞ ¼ r0ð1þ ax=LÞ with and without attached masses are also presented.
4. Conclusions

An approximate approach is presented to study the free vibration of a string with arbitrary
variation in the tension and the mass density using a multi-stepped approximation. To achieve
this a novel exact approach has been developed to study free vibration of a string with N uniform
sections of different mass densities under N different tensions and with N þ 1 attached
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concentrated masses and springs at the ends. The two advantages of this approach are that it leads
to a single-frequency equation for any number of sections and the same computer program can be
used to solve different problems using pertinent data. It is found that natural frequencies of a
fixed–fixed string under constant tension T with mass density, rðxÞ ¼ r0ð1þ ax=LÞ, can be
approximated using a very simple equation, on ¼ ðnp=LÞ½T=fr0ð1þ 0:5aÞg�1=2 and gives reason-
able results for a wide range of a. In all cases, the results obtained using presented approach
agreed with previous results. Author believes that this approach can be used in other areas of
science and engineering.
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